Susceptibility in subcritical random graphs
نویسندگان
چکیده
منابع مشابه
Susceptibility in subcritical random graphs
We study the evolution of the susceptibility in the subcritical random graph G n , p as n tends to infinity. We obtain precise asymptotics of its expectation and variance and show that it obeys a law of large numbers. We also prove that the scaled fluctuations of the susceptibility around its deterministic limit converge to a Gaussian law. We further extend our results to higher moments of the ...
متن کاملSusceptibility in Inhomogeneous Random Graphs
We study the susceptibility, i.e., the mean size of the component containing a random vertex, in a general model of inhomogeneous random graphs. This is one of the fundamental quantities associated to (percolation) phase transitions; in practice one of its main uses is that it often gives a way of determining the critical point by solving certain linear equations. Here we relate the susceptibil...
متن کاملThe Largest Component in Subcritical Inhomogeneous Random Graphs
as was introduced by Bollobás, Janson and Riordan in [1]. Here S is a separable metric space and μ is a Borel probability measure on S . No relationship is assumed between x (n) i and x (n′) i . To simplify notation we shall from now on write (x1, . . . , xn) = (x (n) 1 , . . . , x (n) n ). We begin by recalling some basic definitions and assumptions from [1]. For each n let (x1, . . . , xn) be...
متن کاملSusceptibility of Random Graphs with given Vertex Degrees
We study the susceptibility, i.e., the mean cluster size, in random graphs with given vertex degrees. We show, under weak assumptions, that the susceptibility converges to the expected cluster size in the corresponding branching process. In the supercritical case, a corresponding result holds for the modified susceptibility ignoring the giant component and the expected size of a finite cluster ...
متن کاملRandom Trees in Random Graphs
We show that a random labeled n-vertex graph almost surely contains isomorphic copies of almost all labeled n-vertex trees, in two senses. In the first sense, the probability of each edge occurring in the graph diminishes as n increases, and the set of trees referred to as "almost all" depends on the random graph. In the other sense, the probability of an edge occurring is fixed, and the releva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2008
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.2982848